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A B S T R A C T   

Predicting responsvienss to repetitive transcranial magnetic stimulation (rTMS) can facilitate personalized 
treatments with improved efficacy; however, predictive features related to this response are still lacking. We 
explored whether resting-state electroencephalography (rsEEG) functional connectivity measured at baseline or 
during treatment could predict the response to 10-day rTMS targeted to the right dorsolateral prefrontal cortex 
(DLPFC) in 36 patients with chronic insomnia disorder (CID). Pre- and post-treatment rsEEG scans and the 
Pittsburgh Sleep Quality Index (PSQI) were evaluated, with an additional rsEEG scan conducted after four rTMS 
sessions. Machine-learning approaches were employed to assess the ability of each connectivity measure to 
distinguish between responders (PSQI improvement > 25%) and non-responders (PSQI improvement ≤ 25%). 
Furthermore, we analyzed the connectivity trends of the two subgroups throughout the treatment. Our results 
revealed that the machine learning model based on baseline theta connectivity achieved the highest accuracy 
(AUC = 0.843) in predicting treatment response. Decreased baseline connectivity at the stimulated site was 
associated with higher responsiveness to TMS, emphasizing the significance of functional connectivity charac
teristics in rTMS treatment. These findings enhance the clinical application of EEG functional connectivity 
markers in predicting treatment outcomes.   

1. Introduction 

Repetitive transcranial magnetic stimulation (rTMS) is gaining 
popularity owing to its proven efficacy in treating neuropsychiatric 
disorders by modulating cortical excitability within a relatively short 
stimulation period (Pell et al., 2011). Recently, the use of rTMS therapy 
to alleviate insomnia symptoms has gained increased attention. Several 
studies have assessed the efficacy of rTMS in treating chronic insomnia 

disorder (CID) and reported significant improvements in insomnia 
symptoms in active rTMS groups (Jiang et al., 2013; Song et al., 2019; 
Jiang et al., 2019). However, different clinical studies revealed that 
rTMS has poor reliability, and currently, no biomarkers are available to 
predict its efficacy practically. 

Large variability in the responsiveness to rTMS may result in the 
preservation of cortical excitability in group analysis. Few studies have 
reported the response rate of this treatment in patients with CID. 
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frontal gyrus; IC, insular cortex; SMG, supramarginal gyrus. 
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Generally, 30–50% of patients respond to rTMS (Lacroix et al., 2021; 
Miron et al., 2021), and some studies have indicated the presence of 
subgroups of rapid responders to rTMS (Kaster et al., 2019). This high
lights the need for further research and development on rTMS as a 
treatment modality to enhance its effectiveness and predictability of its 
outcomes. Predicting rTMS treatment outcomes can greatly decrease the 
financial burden on patients and therapy duration. 

By analyzing diverse elements, such as physical characteristics, 
neuroimaging data, genetic markers, and demographic information, 
researchers aim to develop predictive models that assess the probability 
of a patient responding to rTMS (Lacroix et al., 2021; Miron et al., 2021), 
(Kaster et al., 2019). Although previous work in this field has reported 
various clinical and biological markers capable of predicting rTMS 
treatment outcomes (Dh et al., 2008; Kito et al., 2008), these findings are 
inconsistent with those of other studies, suggesting that none of the 
physiological measures are clinically meaningful predictors of rTMS 
treatment (Krepel et al., 2020). 

Recently, some studies focused on early biomarkers emerged in the 
treatment process that are primarily derived from self-rated clinical 
outcomes (Beck et al., 2020; Mondino et al., 2020). It is believed that 
observing changes in these biomarkers in the early stages of rTMS 
treatment could offer a superior prediction of treatment response. A 
retrospective study discovered that failure to exhibit clinical improve
ment at the midway point of the treatment process predicted no 
response to treatments with 88% accuracy (Feffer et al., 2018). 

Neurophysiological and neuroimaging features may be more pre
dictive of responsiveness than clinical variables as they provide objec
tive and quantifiable measurements of brain activity. Previous studies 
have provided evidence that electroencephalography (EEG) changes 
precede clinical response to antidepressant medications, making them 
potential leading indicators of individual treatment response (Cook 
et al., 2002). Several studies have used baseline EEG features, such as 
band power, concordance, and alpha peak frequency, to forecast 
response to rTMS treatment (Bailey et al., 2018), (Arns et al., 2012; 
Watts et al., 2022). Accurate individual-level outcome prediction by 
certain biomarkers can reach 80% (Hasanzadeh et al., 2019; Bailey 
et al., 2019). 

rTMS modulates brain activity through neural oscillations and 
entrainment, leading to the recruitment of neurons from local oscillatory 
networks, and affecting both local and long-range connections. 
Accordingly, the therapeutic benefits of rTMS may be partially 
explained by its functional connection with the brain networks. Some 
studies have linked neuronal network connectivity to rTMS respon
siveness by demonstrating that responders have elevated baseline theta 
connectivity (Bailey et al., 2019); however, the results varied across 
relevant studies (Bailey et al., 2021). Additionally, associations between 
successful treatment and functional connectivity of the stimulated re
gion have been confirmed both in patients with major depression and 
healthy individuals (Salomons et al., 2014; Ge et al., 2020; Nettekoven 
et al., 2015). Another study reported that responders with higher 
functional connectivity in a specific network at baseline could be clas
sified as a subtype with a response rate that is twice that of other sub
types (Drysdale et al., 2017). 

Insomnia is linked to functional brain dysfunction, including the 
dorsolateral prefrontal cortex (DLPFC) area (Cheng et al., 2022). In 
alignment with prior studies, we targeted the DLPFC for our intervention 
(Sun et al., 2021). The limited accessibility of functional magnetic 
resonance imaging hinders its use in clinical environments. Therefore, 
we used resting-state EEG (rsEEG) based functional connectivity as an 
electrophysiological marker to classify responders (R) and 
non-responders (NR) among patients with CID. 

The overarching goal of this study is to explore whether and to what 
extent functional connectivity could predict rTMS responsiveness in 
patients with CID. The primary objective was to investigate how well 
functional connectivity could differentiate R from NR to rTMS at base
line and during treatment. Additionally, we aimed to identify specific 

neurophysiological signatures associated with the success of DLPFC- 
rTMS in patients with CID. By accomplishing these objectives, we 
sought to establish a foundation for evaluating and predicting responses 
to rTMS for insomnia treatment. 

2. Material and methods 

2.1. Participants 

The research protocol was approved by the Ethics Committee of the 
Shenzhen People’s Hospital. All participants provided written informed 
consent before participation. 

All participants underwent a baseline interview, and data on de
mographic and behavioral assessments were collected, including the 
Pittsburgh Sleep Quality Index (PSQI) for sleep quality and the Hamilton 
Depression Rating Scale (HAMD) for mental state. Of the 44 patients 
who underwent eligibility screening, 36 participants (14 males; mean ±
SD age: 49.4 ± 10.9 years) with a primary diagnosis of CID were 
included in the analysis (Table 1). 

The inclusion criteria for patients with chronic insomnia disorder 
(CID) were in accordance with the diagnostic criteria of the Interna
tional Classification of Sleep Disorders-Third Edition (ICSD-3). The key 
criteria were patients (1) aged 18–70 years old and right-handed; (2) 
with sleep disturbances lasting for ≥ 3 months; (3) having PSQI ≧ 7; (4) 
score < 25 on the 24-item HAMD; (5) without other sleep disorders, such 
as sleep apnea or restless legs syndrome. Participants were excluded 
from treatment only if they presented with clinical contraindications to 
rTMS, such as metallic implants, pregnancy, seizures, or a history of 
seizures. Moreover, no patients with a history of psychotic disorders or 
neurological illnesses were accepted for treatment in this study. All 
patients maintained stable doses of their current medications 
throughout the treatment period. 

2.2. Study design 

This single-arm open-label study was conducted to explore the effi
cacy of rTMS. The experimental design is illustrated in Fig. 1. Each pa
tient participated in three EEG scans as follows: on day 1 (pre-treatment, 
Tp1), day 4 (after four rTMS sessions, Tp2), and day 10 (post-treatment, 
Tp3). To ensure data reliability, the EEG measurements were conducted 
in the same room by a single operator. The PSQI score, which reflects 
more severe symptoms with higher values, was collected at Tp1 and 
Tp3. The primary outcome was based on the percentage change in the 

Table 1 
Demographic characteristics and clinical information of responders and non- 
responders.   

CID patients 
(n = 36)   

R 
(N = 13) 

NR 
(N = 23) 

p value 

Sex (M/F) 5/8 9/14 0.97 
Age 46.15 (11.90) 51.26 (10.12) 0.21 
Pre-rTMS PSQI 16.23 (2.98) 14.39 (3.56) 0.11 
Post-rTMS PSQI 8.15 (2.82) 13.87 (3.05) < 0.001 
Pre-rTMS HAMD 14.00 (5.74) 12.34 (3.87) 0.37 
Post-rTMS HAMD 7.08 (5.26) 10.2 (4.07) 0.09 
RMT 40.54 (11.30) 37.22 (12.75) 0.43 
Medication 

(SD/AD/AP) 
N N  
11/8/0 16/14/2 

Note: Data are presented as means (standard deviations). Statistical significance 
using the Chi-square test for sex and two-sided t-test for continuous data was set 
at p < 0.05). R: responder; NR: non-responder; RMT: resting motor threshold; 
PSQI: Pittsburgh Sleep Quality Index; HAMD: Hamilton Depression Rating Scale. 
Medications were categorized into three groups: sleep aid (SD), including ben
zodiazepines and non-benzodiazepines; antidepressant (AD); and antipsychotic 
(AP). 
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PSQI score between pre- and post-treatment. Patients with CID were 
categorized as R to rTMS treatment with PSQI reductions over 25% 
using a threshold criterion obtained from previous rTMS studies (Rm 
et al., 2002). In this sample size of patients with chronic conditions, this 
criterion was clinically meaningful, and ensured that the responders had 
a clear stimulation reaction. 

2.3. rTMS treatments 

rTMS stimulation was performed using a figure eight-shaped focal 
coil attached to a MagPro 100 magnetic stimulator device (MagVenture, 
Denmark). The resting motor threshold (RMT) was evaluated as 
described previously in the guidelines for noninvasive stimulation 
(Rossini et al., 2015). The target site of the right DLPFC was determined 
to be the F4 electrode site according to the International 10–20 EEG 
system (Mir-Moghtadaei et al., 2015). rTMS was delivered at 1 Hz (10 s 
trains, 1 s intertrain interval, and 1360 pulses per session), with a 100% 
RMT stimulus strength. The patients received one rTMS treatment ses
sion daily for 5 days a week over a two-week course. In each session, 
adverse events associated with rTMS were documented and reported. 

2.4. EEG acquisition and preprocessing 

EEG data were collected from 64 channels using a BrainAmp DC 
amplifier (Brain Products GmbH, Germany) in an eyes-closed condition 
for 8 min within a metallic-shielded room. FCz was used as the online 
reference, and AFz was used as the ground. Data were initially sampled 
at 5000 Hz with impedances kept below 5 KΩ for all channels. All par
ticipants were asked not to consume caffeine or energy-related drinks for 
approximately 24 h prior to EEG collection. The offline preprocessing 
steps were briefly described as follows. (1) down-sampled the raw data 
to 250 Hz; (2) omitted the bad segments contaminated by artifacts 
manually; (3) applied a bandpass filter of 0.5–70 Hz and notch filter of 
50 Hz on signals; (4) rejected the bad channels and then interpolated 
them using neighboring channels via spherical spline interpolation; (5) 
removed remaining artifacts like eye movement, persistent muscle 
artifact, heart noise and channel noise using independent component 
analysis; (6) re-referenced to the common average. 

2.5. Estimating functional connectivity 

All connectivity analyses were performed in source space. The time 
series for each voxel was reconstructed using the Brainstorm toolbox 
(Tadel et al., 2011). First, the head model was computed using Open
MEEG with a FreeSurfer average brain template using the symmetric 
boundary element method (Gramfort et al., 2010). A total of 3003 
rotating dipoles with unconstrained orientations were created on the 
cortical surface. For each voxel, the current density time series was 
reduced to a single direction by principal component analysis. 

Additionally, the lead-field matrix was obtained after co-registration of 
the electrode locations and anatomical magnetic resonance imaging. 
The inverse operator that mapped the current density from the sensor 
space to the source space was estimated using the minimum norm 
estimation method with depth weight and regularization (Toll et al., 
2020). Finally, the initial 3 min of EEG data were binned into 10 s time 
epochs for connectivity analysis. 

We computed the functional connectivity of two classical EEG bands, 
theta (4–8 Hz) and alpha (8–13 Hz), for each voxel, as previous studies 
have often focused on these bands in the resting state (Bailey et al., 
2018; Corlier et al., 2019). The connectivity analyses were computed at 
the vertex level by quantifying the phase relationship between the 
time-series oscillations. Here, we used the debiased weighted phase lag 
index (dwPLI) to illustrate the non-zero phase lag statistical in
terdependencies between each vertex. It is a conservative approach to 
estimate connectivity minimizing spurious field spread and the impact 
of volume conduction (Vinck et al., 2011). Then, the average dwPLI 
values across all possible vertex pairs were mapped onto the 
Desikan-Killiany template, representing the connectivity between each 
pair of regions of interest (ROI) (Desikan et al., 2006). This template 
identified 68 cortical regions. The rostral middle frontal gyrus (RMFG), 
which is the anterior division of the DLPFC, served as a stimulation site 
in this context. As a result, individuals were depicted through 67-dimen
sional global functional connectivity matrix based on right RMFG at 
each frequency band. 

2.6. Classification analysis 

We built a machine learning model to assess the effectiveness of 
discriminating R from NR. Our analysis included the following three 
situations: pre-treatment (Tp1), during rTMS treatment (Tp2), and 
treatment-induced connectivity changes between these two time points 
(Tp2-Tp1). That is, the baseline functional connectivity maps were 
subtracted from the corresponding maps at Tp2 for each participant to 
quantify the treatment-induced connectivity changes resulting from 
rTMS. In addition, each situation includes two frequency bands, alpha 
and theta. A total of 6 sets of feature matrices are used to build machine 
learning models, each containing 67 connectivity features. 

In this work, the most relevant features were selected using the 
sequential floating forward selection algorithm. This technique operates 
by first selecting the best individual feature (referred to as the first 
feature in this context) and then evaluating the remaining features to 
determine the second feature that optimizes the classification rate when 
combined with the first one. This iterative process continues until no 
further improvement in classification rates is observed when a new 
feature is added. Notably, the SFFS method introduces a backward 
elimination step into the sequential search process. At each step, an 
evaluation is performed to determine if the removal of a feature im
proves the classification rates. If this is the case, the reduced feature set 
is adopted as the new feature set and the forward search proceeds 
accordingly. The connectivity matrices were used to train a random 
forest classifier, and the classification performance was evaluated using 
the leave-one-out cross-validation procedure. Finally, the group with the 
best classification performance was selected from the 6 feature matrices, 
and the connectivity with the largest contribution to accuracy was 
selected. 

The response prediction criteria included accuracy, specificity, 
sensitivity, and area under the curve (AUC), with higher values signi
fying better discrimination ranging from 0 to 1. 

2.7. Statistical analysis 

For continuous data, the Friedman test was used to check for dif
ferences without a normal distribution, whereas a two-sided t-test was 
used when a normal distribution was observed (p < 0.05). To determine 
if PSQI and functional connectivity changes differed between the R and 

Fig. 1. Trial design schematic. Each participant with CID received active rTMS 
treatment targeting the right DLPFC at a frequency of 1 Hz for 10 consecutive 
days within two weeks. The EEG data were acquired at three time points: pre- 
treatment (Tp1), after the four rTMS sessions (Tp2), and post-treatment (Tp3). 
Eight minutes of eyes closed rsEEG data were recorded during the collection. 
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NR groups before and after treatment, a two-way repeated-measures 
analysis of variance (ANOVA) was performed with group (R and NR) and 
time (pre- and post-treatment) as fixed variables. The Greenhouse- 
Geisser correction was applied to ANOVA comparisons to account for 
sphericity violations, and the Benjamini and Hochberg method was used 
to correct for multiple comparisons and control the false discovery rate. 

3. Results 

3.1. Clinical response 

At the post-treatment assessment, 13 of the 36 participants (36%) in 
the CID group met the criteria for responder status (Table 2). At baseline, 
no significant differences were found regarding age, sex, PSQI score, 
HAMD score, or RMT between the responder and non-responder groups. 
Two-way repeated-measure ANOVA assessing PSQI revealed a signifi
cant main effect of time (F (Pell et al., 2011; Vinck et al., 2011) = 92.11, 
p < 0.0001), as well as an interaction between group and time (F (Pell 
et al., 2011; Vinck et al., 2011) = 71.11, p < 0.0001). Post-hoc tests 
showed that the final PSQI score after rTMS treatment was significantly 
lower among the responders compared to non-responders (post hoc 
t-test = 5.186, p < 0.0001, FDR corrected) (Fig. 2A). 

3.2. Classification analysis 

Next, machine learning techniques were employed in different situ
ations to explore the predictive potential of individual-level measures. 
Among the three conditions analyzed, the baseline right RMFG-based 
connectivity matrix outperformed the other two conditions in the 
overall classification, regardless of the theta or alpha band (Table 2). 
Specifically, the theta-band baseline connectivity features exhibited the 
highest predictive capability for treatment response, achieving an ac
curacy of 84.3% (See supplementary for ROC curves). In contrast to the 
baseline alpha classifier, the theta connectivity classifier showed higher 
accuracy and sensitivity, albeit with relatively lower specificity in 
testing performance. Within the baseline theta band scenario, three 
cortical connectomes stood out in the model: connections from the right 
RMFG to the left caudal middle frontal gyrus (CMFG), the left insular 
cortex (IC), and the right supramarginal gyrus (SMG) played the most 
significant role in distinguishing R from NR (Fig. 2B). 

3.3. Changes in the RMFG-based functional connectivity after rTMS 

To gain deeper insights into the dynamic changes induced by rTMS at 
the group level, we proceeded to evaluate the global brain connectivity 
seeded from the RMFG during the treatment period (see Fig. 3). The 
results of two-way repeated-measure ANOVA indicated no significant 
interaction between group and time. Nevertheless, it is noteworthy that 
the global theta band connectivity based on RMFG in the R group was 
significantly lower at baseline than that in the NR group. We observed a 
clear convergence in the distribution of rTMS-induced connectivity 
changes between R and NR. On average, patients in the R group 

demonstrated an immediate increase in RMFG-based global connectivity 
following rTMS at Tp2, whereas the NR group did not show such an 
increase (See supplementary for more details). 

4. Discussion 

The effectiveness of rTMS treatment in individuals with chronic 
insomnia varies, and it remains challenging to identify objective bio
markers that can predict treatment outcomes either prior to, or early in 
the treatment process. According to our findings, the baseline functional 
connectivity features (Tp1) in the theta band had superior discrimina
tory ability between the R and NR groups than those observed during 
treatment (Tp2) or those induced by treatment (Tp2-Tp1). Additionally, 
DLPFC-rTMS responders had lower baseline RMFG-seeded global con
nectivity than non-responders. In conclusion, our study provides 
empirical evidence supporting the strong relationship between treat
ment responsiveness and the functional connectivity of the stimulation 
site. We discovered that functional connection plays a critical role in 
determining the efficacy of rTMS treatment, and it holds potential as a 
valuable tool for evaluating and predicting response to rTMS in clinical 
practice. 

Insomnia refers to persistent difficulties with sleep initiation, dura
tion, or quality, which lead to daytime dysfunction (Morin et al., 2015). 
In this study, we focused on patients with CID, given that it represents a 
significant risk factor for neuropsychiatric disorders and maladaptive 
cognition, with neither medicine nor cognitive behavioral therapy 
providing sustained remission (Olaithe et al., 2021). Clinical evidence 
regarding the effectiveness of rTMS therapy in patients with insomnia is 
limited, and as mentioned above, responses to DLPFC-rTMS vary 
considerably among individuals. Our results revealed an overall rTMS 

Table 2 
Summary of classification performance of the different connectivity features.   

Theta Alpha  

Tp1 Tp2 Tp2-Tp1 Tp1 Tp2 Tp2-Tp1 
ACC 88.89 86.11 83.33 88.89 77.78 80.56 
SEN 92.30 84.62 69.23 76.92 84.62 76.92 
SPE 86.96 86.96 91.30 95.65 73.91 82.61 
AUC 0.843 0.762 0.793 0.759 0.759 0.763 

Note: Accuracy (ACC): the percentage of correct response predictions made by 
the classifier; Specificity (SPE): the percentage of non-responders who were 
predicted to be non-responders; Sensitivity (SEN): the percentage of responders 
who were identified as responders; AUC: area under receiver operating char
acteristic curve 

Fig. 2. A) Changes in the PSQI of R and NR before and after rTMS treatment; B) 
The corresponding selected three features classifying R and NR: RMFG-LCMFG, 
RMFG-LINS, and RMFG-RSMG; Note: * **indicate significant differences 
at p < 0.001. 

Fig. 3. Changes in theta band RMFG-based functional connectivity over time. 
Two-way repeated-measure ANOVA (group x time) showed no significant 
interaction effect of time and group (F (2.68) = 1.152, p = 0.322) as well as a 
main effect of time (F (1,34) = 4.125, p = 0.0501) in RMFG-based global 
connectivity anbetween. Multiple comparisons revealed that the R and NR 
groups at baseline reached significant differences (mean diff = − 0.08239, 
p = 0.0207, FDR corrected). Error bars represents SEM; R: responders, NR: non- 
responders; Note: * p < 0.05. 
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effectiveness rate of 36%. This underscores the importance of consid
ering large inter-individual variability when conducting rTMS studies, 
and helps explain the inconsistent results observed across studies. 

EEG is a valuable tool for investigating brain activity and directly 
reflecting neural processes. The analysis of EEG-based functional con
nectivity allows the examination of synchronized neural activity across 
different brain regions, gaining insights into the functional organization 
of the brain. Our findings suggest that patients with lower DLPFC-seeded 
functional connectivity in the theta band before treatment may benefit 
more from low-frequency DLPFC-rTMS treatment, reinforcing its role as 
a predictive factor for patients with CID. The clinical implication is that 
by excluding patients with higher baseline DLPFC connectivity from the 
right DLPFC low-frequency paradigm, we can reduce the proportion of 
patients who would not respond, resulting in higher efficacy. 

Currently, the direct association between the strength of connectivity 
and successful treatment outcomes has not been established. Previous 
studies have reported mixed findings, with some showing positive cor
relations between higher connectivity and responsiveness and others 
showing negative correlations (Salomons et al., 2014; Nettekoven et al., 
2015; Ge et al.,). These findings emphasize that the rTMS treatment 
effectiveness did not necessarily hinge on higher connectivity. Further 
research is required to better understand the intricate relationship be
tween connectivity profiles and treatment responses, as well as the un
derlying mechanisms involved. 

Fig. 3 seems to indicate an increase in functional connectivity orig
inating from the stimulation site after rTMS treatment. This observation 
is consistent with the summary by Beynel et al. that active rTMS induces 
significant changes in functional connectivity (Beynel et al., 2020). Both 
low-frequency and high-frequency stimulation lead to increased func
tional connectivity, although these two frequencies of rTMS have pre
viously been associated with opposite effects. Typically, low frequency 
(<1 Hz) is thought to inhibit, and high frequency (≧5 Hz) to facilitate 
cortical excitability. This implies that rTMS may potentially treat the 
disorder by rewiring the disrupted cortical connections (Li et al., 2022). 

Feffer et al. demonstrated that patients who did not respond to rTMS 
treatment midway through the process could be reliably identified as 
non-responders with high accuracy (Feffer et al., 2018). Based on their 
findings, we explored whether similar functional connectivity markers 
could be observed earlier after four treatment sessions. As anticipated, 
our results indicated that only individuals who responded to treatment 
displayed increased connectivity profiles. This observation suggests that 
early changes in functional connectivity could serve as predictive in
dicators of response to rTMS treatment. However, it is essential to 
acknowledge that both respondents and non-respondents were not ho
mogeneous. Even among the respondents, response rates to treatment 
varied significantly. This substantial variability poses a considerable 
challenge and limits the generalizability of these findings. Herein, 
further research involving more homogenous patient cohorts would be 
needed to validate and refine these phenomena. 

Theta and alpha frequency bands are associated with specific brain 
states and cognitive functions, making them particularly interested in 
studying the brain’s functional connectivity and information processing 
during the resting state (Klimesch, 1999). Integrating EEG measures into 
machine learning models has shown potential in predicting treatment 
responses as data-driven techniques are capable of classifying two 
groups intuitively (Bailey et al., 2018; Hasanzadeh et al., 2019; Corlier 
et al., 2019). Our focus was to analyze the association between func
tional connectivity and rTMS treatment efficacy, rather than con
structing the most discriminative model for predicting treatment 
response status. Therefore, we did not incorporate other types of fea
tures or combine features from various frequency bands. Certainly, 
combining all possible features may improve classification accuracy. 

In addition, we made no presumptions about the linear relationship 
between neurophysiological characteristics and clinical outcomes. In 
fact, we plotted the changing curve of functional connectivity of the 
stimulation site over time, the functional connectivity did not follow a 

straightforward linear trend with each subsequent stimulation session. 
Our results confirmed that neurophysiological changes are more dy
namic during stimulation (Ji et al., 2020). 

We hypothesized that cortico-cortical connectivity influences the 
therapeutic effects of rTMS (Salomons et al., 2014; Eshel et al., 2020). 
Specific connectivity patterns may indicate individuals who are more 
likely to benefit from DLPFC-rTMS. During our investigation, we iden
tified three cortical regions that were particularly influential in the 
classification process. One of these regions is the CMFG, situated in the 
frontal lobe, and primarily associated with executive function and 
working memory (McCarthy et al., 1996). The IC, another significant 
region, acts as a central hub in the salience network. Previous studies 
have linked insular network abnormalities to the neural circuitry un
derlying insomnia (Chen et al., 2014). Additionally, the SMG also plays 
an important role in this process. This region is part of the somatosen
sory association cortex and participates in complex cognitive functions 
(Deschamps et al., 2014). This finding demonstrated that the connec
tivity of the stimulation site to specific downstream regions was 
responsible for the clinical effects of rTMS, providing insights into the 
potential neurophysiological mechanisms underlying the responsiveness 
of patients with CID to DLPFC-rTMS treatment. 

This study had some limitations. First, the sample size was small, 
with only 13 respondents included in the analysis owing to the low 
response rate. This limited sample size may reduce the generalizability 
of the findings and the statistical power of the analysis. Second, the ef
fect size of PSQI was higher for treatment durations of 20 days than for 
10 days (Jiang et al., 2019); therefore, the PSQI assessment conducted 
after 10 treatment sessions may exclude delayed responders in the 
non-response group. Finally, while we emphasize that only patients with 
chronic insomnia were considered in this study, the patients reported 
various insomnia complaints, such as initial, intermediate, and terminal 
insomnia. Given the high heterogeneity of insomnia itself and the small 
sample size, it is not surprising that no conclusive picture has emerged. 
Further studies with larger sample sizes are required to validate and 
strengthen our findings. 

5. Conclusions 

Despite advancements in the diagnosis and management of 
insomnia, it remains largely unrecognized and untreated. In this study, 
we examined the functional signatures of low-frequency DLPFC-rTMS 
treatment in patients with CID to introduce an additional approach for 
evaluating and predicting rTMS responsiveness. Our findings suggest 
that baseline connectivity characteristics in the theta band offer a more 
effective differentiation between responders and non-responders than 
relying solely on connectivity in the early stages of treatment or 
treatment-induced connectivity changes. This discovery has significant 
potential to facilitate the optimization of manipulation protocols for 
personalized treatment, thereby increasing the rTMS use in clinical 
practice; however, future studies with a larger sample size will enhance 
the robustness and reliability of our results. 
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